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M E T H O D  OF ANALYSIS  OF M A T H E M A T I C A L  MODELS 

OF M E D I A  U N D E R  C O M P L E X  L O A D I N G  

D. Kolymbas,  S. V. Lavrikov l, and A. F. Revuzhenko 1 UDC 539.3 

A method of analysis of constitutive models of media with complex loading trajectories is 
proposed. It is based on a comparison of data from laboratory experiments and corresponding 
results of numerical calculations. In previous laboratory experiments, nearly homogeneous 
complex loading with continuous rotation of the principal axes of the strain tensor and loading 
with broken strain trajectories was performed. Numerical calculations for the types of loading 
corresponding to the experiments performed are based on the constitutive equations of the model. 
The numerical results obtained and data of the laboratory experiments are compared. The 
hypoplastic model of a geomedium is analyzed. Analysis shows that the model is a satisfactory 
qualitative and quantitative approximation of data from laboratory experiments on complex 
loading of geomaterials. 

I n t r o d u c t i o n .  In solving most problems of the mechanics of continuous media, it is necessary to 
select or develop a corresponding mathematical deformation model. For an elastic body or a linearly viscous 
liquid, the conventional classical Lam~ equations and Navier-Stokes equations were developed. However, for 
more complex media, for example, elastoplastic and granular materials and nonlinear fluids, such equations 
are not available. Therefore, for each class of problems, the choice of a deformation model should be made 
separately. Here much depends on particular loading conditions and the objectives to be pursued by solution 
of a particular problem. 

Most of the models in use are of a phenomenological nature. This means that they are developed 
relying on some basic experiments. Such experiments should determine both the equations of the model and 
the values of the associated parameters. 

The choice of basic experiments is a difficult problem. Basically, mathematical models can be developed 
using any experiments, for example, experiments on forcing of a stamp in a material. However, to interpret 
such an experiment, one must choose a certain mathematical model, solve a boundary-value problem, compare 
the results obtained with experimental data, adjust the model, etc. It is a complicated and cumbersome way. 
At the same time, there is a special class of loadings for which preliminary information on the mathematical 
model is not required to interpret experiments. This is the class of quasistatic loadings with uniform stress and 
strain distributions over space. Here the deformation process reduces to a sequence of affine transformations. 
In this case, only some general restrictions should be satisfied: loading should be such that inertial and 
mass forces can be ignored, and the deformation process should be stable (i.e., theological and other forms 
of instability are not admitted). Thus, in stable processes, the kinematics of deformation does not depend 
on the rheology of the material, i.e., it is identical for any media: elastoplastic, viscous, free-flowing, etc. 
Therefore, experiments on homogeneous deformation are basically an ideal basis for development and analysis 
of mathematical models of continuous media. 

It is not practical to achieve a completely homogeneous state. It is only possible to implement a 
deformation process that is close to homogeneous deformation. For metals, such processes are well known 
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[1, 2]. These are tension and twisting thin-walled tubular specimens. However, this classical procedure is 
unacceptable for more complex media: viscous and granular materials, soils, powders, etc. Here, a search for 
new basic experiments is required. 

A general classification of homogeneous deformation processes including well-known processes such as 
homogeneous tension, pure shear, torsion, etc., is given in [3, 4]. New classes of loadings have also been detected. 
They have been used to develop procedures and laboratory setups intended for homogeneous deformation of 
a free-flowing medium under pure shear [5, 6], complex loading with continuous rotation of the principal axes 
of the stress tensor [7, 8], and complex loading with broken strain trajectory [9]. In the last case, the principal 
axes of stresses rotate about the material by a jump through a finite angle. In [10, 11], the hypoplastic model 
of a free-flowing medium of [12-14] was analyzed using the experimental procedures developed. For this model, 
numerical experiments on simple loading (pure shear) and complex loading (with continuous rotation of the 
principal axes of the stress tensor and broken loading trajectory) have been performed. A comparison of 
results of the numerical calculations and the corresponding data of laboratory experiments indicate that the 
model of [12-14] gives a good approximation of the experimental results on dilatancy and the stress level and 
predicts a number of effects involved in the deformation of a free-flowing medium for both simple and complex 
loading trajectories. At present, a new version of the hypoplastic model of [12-14] is proposed in [15]. 

The goal of the present work is to perform a numerical analysis of the model of [15] using the 
experimental procedure of [7-9] for complex loading of a free-flowing medium with continuous rotation of 
the principal axes of the stress tensor and broken strain trajectories. 

Loading P r o c e d u r e .  We first consider homogeneous deformation of a free-flowing medium under 
complex loading with continuous rotation of the principal axes of the stress tensor. According to the solutions 
of [7, 8], the specimen of the material must be shaped like an elliptical cylinder with the axis Oza, and the 
velocity vector v satisfying the Kepler's law must be specified on the elliptic boundary in the plane Ozlx2 
(plane deformation): 

v .  n = 0, Iv x r] = fl =cons t .  (1) 

Here n is the normal vector to the elliptic boundary of the sample and r is the radius-vector (Fig. 1). In 
this case, irrespective of whether the medium is elastic, viscous, plastic, etc. (if there is stability, i.e., shear 
localization, fracture, etc. are absent), the strain distribution over space is uniform [7]. Both conditions (1) 
are difficult to satisfy in practice. It is easier to retain only the basic features of the ideal situation, i.e., to 
meet the first condition (1) and assume a constant linear velocity: 

v �9 n = 0, Ivl  =cons t .  (2) 

It is clear that replacement of conditions (1) by (2) leads to a certain inhomogeneity. However, by virtue of 
symmetry, the material element at the center of the ellipse (Fig. 1) is under complex loading conditions with 
rotation of the principal axes of stresses. Thus, if measurements are conducted for the central element on a 
small basis, the results obtained can be considered accurate and can be compared with theoretical calculations 
for homogeneous deformation. 

In [8], loading with boundary conditions (2) was performed as follows. The free-flowing material 
specimen 4 (Fig. 2) was placed in a cylindrical cup 3 made from a thin bronze plate. The bottom of the 
cup was closed by stretched rubber 8. The loading device consisted of rigid plates 5 with coaxial elliptic holes 
in which the cylindrical cup 3 was inserted. Plates 5 enclose the cup at different sections across the height and 
were fixed to the pin 7 which was supported in bearings on the base 6. Loading was performed by continuous 
rotation of the pin 7 (and, hence, the plates 5) by an electric motor. The rotating moment on the cylindrical 
cup that arose as a result of friction against the plates was compensated by flexible ties 2, which were fastened 
to the upper part of the cup and immovable posts 1 (Fig. 2). 

The goal of the experiments of [8] was to study the behavior of the dilatancy of a free-flowing medium, 
the stress state, and the coaxiality of the stress an6 strain tensors. During loading, the cross-sectional area 
of the cup containing the sample of the medium remained constant. This reduces examination of dilatancy 
to examination of the change in the height of the material filling the cup. The stress state and, hence, the 
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coaxiality of the stress and strain tensors were studied using a special stress gauge [16], which was placed 
inside the sample at a certain fixed depth. A vertical spoke was tightly fastened to the gauge to control the 
orientation of the gauge with respect to the axes of the elliptic holes of the loading plates. A flag whose plane 
coincided with the plane of the gauge was fixed at the free end of the spoke above the surface of the sample. 

We consider the experimental procedure of [9] for complex loading of a free-flowing medium with broken 
strain trajectory. Loading was performed using a homogeneous shear device [5, 6] (Fig. 3), which was a cubic 
chamber with rigid movable walls 2, 3, and 6 and rigid square bottom with changing shape. During shear, the 
square becomes a parallelogram (Fig. 3a and c). This is a typical example of simple loading. 

Bending of the loading trajectory can be implemented as follows [9]. The flexible cylindrical cup 1 
(Fig. 3b) with the free-flowing material sample 5 was placed in the shear chamber. The lateral surface of the 
cup was an elastic shell made of thin sheet bronze. The bottom of the cup was closed by uniformly stretched 
rubber, which was fixed to the inner surface of the shell. The cup was placed at the center of the chamber 
inside the circular cylindrical cavity formed by a set of vertical plates 4 of different length (Fig. 3b). Upon 
displacement through angle % the lateral walls 3 and 6 of the chamber exerted forces through plates 4 on 
the lateral surfaces of the cup 1 and deformed it: the circle became an ellipse (Fig. 3a and c). Bending of the 
loading trajectory was performed as follows. A certain initial position of the chamber, for example; position 
A was selected (Fig. 3a). Suppose it is necessary to shift the material from position A to position C (Fig. 3c) 
with the broken trajectory. For this, the chamber was first shifted from position A to position B (Fig. 3b), and 
then loading was terminated. In this position, the cup 1 containing the material was rigidly rotated through 
a certain angle ee. In other words, the packing of the particles of the material in the cup was not disrupted. 
Then, further loading was performed by shift from position B to position C. The magnitude of bending of the 
loading trajectory is determined by the angle ~e. In this case, the loading trajectory in the strain space is a 
broken two-link line. 

The dilatancy of the bulk material and the coaxiality of the stress and strain tensors was examined 
experimentally. Theoretically, in pure shear, the cross-sectional area of the cup containing the material should 
remain constant [the area of the circle (Fig. 3b) should be equal to the areas of the ellipses (Fig. 3a and c)]. 
In practice, the perimeter of the cross section of the cup is kept constant. In this case, the change in the 
cross-sectional area is a quantity of higher-order smallness and can be ignored. It should be noted that for 
large shears, it is not difficult to introduce corrections for the change in the cross-sectional area. In other 
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words, as in the previous experiment ,  examination of d i la tancy reduces to examining the change in the height 
of the fill. The  coaxiality of the  stress and strain tensors was checked by a gauge of tangential stresses [17], 
which was placed at a part icular  depth in the free-flowing medium.  The gauge was used to determine the 
orientation of domains of the principal stresses (i.e., domains  in which shearing stresses were absent). 

N u m e r i c a l  S i m u l a t i o n .  We perform numerical calculations of the complex loading of a free-flowing 
medium using the mathemat ical  model of [15]. The const i tu t ive  equations of the model relating the stress 
tensor T and the strain-rate tensor D have the form 

TO= CItr(T + S)D+c2tr((T + S)D ) (T + S)+ [C3T2 + C4T,2 3 C T .3 C5T + 6 , "/--:-"-"~:~', 

= (i + e ) t r  (D); (3) 

Co :sE, s :  [so+]c( P---]Uln( l +e ~ 1 ( ~ - ) ~  
\ P o /  \1  + eo / l  \ P o /  

p = tr (T), k = - so  In (4) 
k l  + eo / J '  

1 1 ( ~ ; " V  - -  v ' u t ) ,  
T O = J ~ -  W T  + TW,  T* = T -  5 P E '  W = -~ 

where v is the velocity field, e is the porosity, and E is the  uni t  tensor. The constants of the model are 
C1 = - 1 0 3 . 0 1 ,  6"2 = -197.61,  C3 = 37.24, C4 = 1572.92, Cs = - 3 9 4 . 6 9 ,  

C6 = -1265.66, pT = -0 .5  MPa, p0 = -0 .729  MPa, so = -0 .149 MPa, (5) 

u = 0 . 1 ,  c~=0.6,  e T = 0 . 7 3 ,  e 0 = 0 . 5 4 .  

Within the framework of the  same equations, model (3)-(5) describes both the state of active loading and 
unloading. By virtue of this, the equations of the model are substantially nonlinear even for increments. 

Simulation of complex loading with continuous ro ta t ion  of the principal axes of stresses was performed 
as follows. As noted above, boundary  conditions (1) guarantee  a nonuniform strain distribution. In this case, 
the homogeneous velocity field in the plane Oxlx2 has the  form 

x2 (6) v, = ~ ~ ,  v2 = - ~  x~ 
a 2 , 

where a and b are the semiaxes of the ellipse (a > b), and motion along the boundary is performed 
counterclockwise for ~ > 0. We fix a horizontal layer of the material at depth h. The vertical pressure 
component  for the layer can be considered constant and equal  to the weight of the overlying layers [10], i.e., 

&33=0  or c r 3 3 = p h = c o n s t ,  (7) 

where p is the density of the material.  By virtue of the homogenei ty  of deformation for the selected layer, the 
relations 

Ovl Or2 
Oz3 Oz3 - 0 (S) 
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hold. The tensors D and W take the form 

0 p 0 

D =  p 0 0 

0 0 d 

W = 

0 - q  0 

q 0 0 

0 0 0 

where p = ((a 2 - b2)/(2a2b2))fl and q = ((a 2 + b2)/(2a2b2))fl. The quanti ty d = g33 = Ov3/Ox3 is in fact the 
required dilatancy parameter .  Thus,  the problem amounts  to solving Eqs. (3)-(5) subject to conditions (6)- 
(8). In a component-wise form, they are a system of ordinary first-order differential equations with nonlinear 
right side. This system is solved numerically by the Euler method.  

Simulation of complex loading with broken strain trajectory was performed by a similar scheme. If 
shear loading occurs in the plane Ozlz2, the associated homogeneous velocity field has the form 

Vl = 26x2, v2 = 0, 8 = •  = const, ko > 0. (9) 

Here the plus and minus denote the direction of shear. If the trajectory is bent  [rigid rotation of the material 
sample in position B (Fig. 3b)] through angle ae, the field (9) becomes the field 

Vl = 26(-xlsina~+ z2cosm)cos~, v2 = 26(-xlsinee+ x2cosee)sinm. (10) 

Thus, the velocity field (10) is the plane velocity distribution in homogeneous deformation with the loading 
trajectory bent through angle ee. If m = 0, the field (10) coincides with (9). In this case, as in simulation of 
complex loading with continuous rotation of the principal stress axes, we select a layer of the material at a 
certain depth.  For this layer, relations (7) and (8) remain valid. In turn, the tensors D and W take the form 

- 6 s i n 2 m  6cos2ee 0"~ { 0 6 0 

D =  6cos2ee 6sin2ee 0 ) ,  W =  [ - 6  0 0 , 

0 0 d 0 0 0 

where d = ~33 = Ov3/Ox3 is a dilatancy parameter.  Thus, the problem reduces to solving systems (3)-(5) and 
(10) subject to conditions (7) and (8). 

C a l c u l a t i o n  R e s u l t s .  We conduct numerical calculations for complex loading of a free-flowing medium 
with continuous rotation of the principal axes of stresses. For the initial s ta te  of the medium, we set 

0"33 = 0.003 75 MPa,  0.u : 0.22 = ~ 0 . 3 3 ,  ~ = 0.42, O"12 = O"13 = 0"23 = 0 ,  r = 0.85. (11) 

Loading is implemented by the following scheme. We assign a certain value of the areal velocity ~ (for 
numerical calculations, this value determines the value of the integration step in t ime and may not be small) 
and set the ratio of the semiaxes of the ellipse equal to a/b = 1.1. We fix a certain point on the elliptic 
boundary, and, as the loading parameter,  we select the angle 7 through which this mass point rotates about 
the center of the ellipse during deformation (see Fig. 1). For the initial state,  we set 7 = 0 and increase 2 to 
a certain fixed value, for example,  7 = 10~r. 

In this scheme, as in the experiments, the material  undergoes di latat ion upon deformation (it is 
compacted in our case). Wi th  time, this process stabilizes, and a steady regime is established. In this regime, 
the parameters do not change during further deformation. A plot of the strain e33 versus the angle 3' is shown 
in Fig. 4. At the points O and A, the porosity is e = 0.85 and 0.81681, respectively. The  stresses a l l ,  a22, and 
cri2 depending on the angle 7 also stabilize with time. Calculations by the loading scheme described agree 
well with results of laboratory experiments [8]. It should be noted that  in the experiments  of [8], about 8-10 
rotations of the loading plates were required to stabilize the deformation process, i.e., 7 "" 16~'-20rc. For the 
model of [15], stabilization is at tained much more rapidly, practically in one rotat ion (7 "~ 2rr). 

In describing complex loading, one of the main problem is to select the equation of coaxiality or 
disalignment for the principal axes of stresses. The experiments of [8] revealed that  the principal axes of the 
stress tensor in the plane Oxlx2 coincide with the axes of the ellipse. The largest compressing stress is directed 
along the minor axis of the  ellipse, and the smallest stress is directed along the major  axis. In other words, in 
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a free-flowing medium, the condit ion of coaxiality of the stress and strain tensors is satisfied. In contrast ,  for 
viscous liquids, the stress-tensor is coaxial to the strain-rate tensor. Therefore, the principal axes of stresses 
are deflected from the major  axis of the ellipse through an angle of +45 ~ [8], which is confirmed by a direct 
experiment  using the procedure described above. A numerical  experiment  for model (3)-(5) gives a deflection 
of the principal stress al  f rom the major axis of the ellipse through an angle of -43.85 ~ 

We now change the loading scheme and consider s i tuat ions where the direction of rotat ion of the 
loading plates 5 (see Fig. 2) can change. We use all initial values of the parameters of the problem in the  form 
(I 1) except for the porosity e. We set e = 0.8 and perform a numerical experiment  by the following loading 
scheme. We first increase the angle 7 from 0 to 27r and then change the direction of rotation (f~ on -f~)  and 
decrease the angle 7 from 2~" to ~. After that,  we change the direction of rotation and perform loading from 
7 = 7r to 7 = 2rr. Calculations show that  a decrease in the initial porosity produces loosening of the material  
as a whole (Fig. 5; here and in Fig. 6 the loading curve is OP1P2A). A change in the direction of loading 
lea:ds to sudden compaction of the material with subsequent  loosening and stabilization. This result agrees 
well with the experiments of [8], from which it follows that  wi th  a cyclic change in the direction of loading at 
small ampli tudes of the angle 3', it is possible to attain very high density of the material. An analysis of the 
stresses q l ,  a22, and a12 shows that  a change in the direction of loading leads to a sharp jump of stresses, 
after which, however, the deformat ion process is rapidly stabilized. 

From the experiments of [8] it follows that  the di la tancy depends on the magni tude of the additional 
load on the surface of the free-flowing medium. If the surface of the material is additionally loaded (the design 
of the device makes this possible), then, after a t ta inment  of a steady deformation regime, the packing of 
the particles will be denser than  without additional surface loading. In numerical calculations, the additional 
loading can be modeled as follows. Let the initial stress a33 be twice that  in the previous calculations, i.e., 
aaa = 0.0075 MPa, and the  initial porosity e = 0.8. The  remaining parameters are the same as in (11). 
Calculations show that the  deformation process becomes s teady at higher density of the medium (in Fig. 6, 
the porosity at the point A is equal to e = 0.78365) than in calculations without  additional loading (in Fig. 5, 
the porosity at the point A is e = 0.81678). 

Thus,  the results of comparison of the numerical and laboratory experiments on complex loading of a 
free-flowing medium with cont inuous rotation of the principal axes of stresses lead to the following conclusion. 
Model (3)-(5) predicts the quali tat ive behavior of dilataney and gives a satisfactory approximation for the 
level of the stress state of free-flowing media under complex loading. In the model proposed here and the 
model of a viscous liquid, the  degree of coaxiality of the stress and strain tensors is identical. 

Let us analyze results of calculations of complex loading with broken loading trajectory. We examine 
the following initial state of the medium: 

aa3 = 0.0075 MPa, a l l  = a22 = (a33, ( = 0.42, e = 0.85. 

As the loading parameter,  we use the angle of displacement of the  chamber 3' (see Fig. 3). The loading program 
is as follows. Initially, we per form a cyclic shear of the material  with ampli tude 7m~x = 5 ~ i.e., a unidirectional 
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shear (parameter ~ = k0 > 0) to angle 7 = 7max and then a shear in the opposite direction (~ = -k0 < 0) to 
angle 7 = -Tmax, etc. In this case, the velocity field has the form (9). After a certain number of cycles, the 
trajectory is bent  through angle a~ at the moment 3' = 0 (see Fig. 3b). The velocity field thus takes the form 
(10). After that ,  cyclic shear loading is continued by the scheme described above. Calculations were conducted 
for angles ~e = 30, 60, and 90 ~ 

The calculation results show that in cyclic shear until bending of the trajectory, the deformation process 
tends to a steady regime in which all parameters do not change from cycle to cycle but depend only on the 
phase (angle 3') inside the  cycle. However, at the bend point of the trajectory, the steady regime is upset. 
tlere sudden compaction of the material is observed. A plot of the strain c33 versus 3' is shown in Fig. 7 for 
ee = 90 ~ After the bending of the trajectory, a certain number of cycles is required again for stabilization of 
the deformation process. This result completely agrees with data  of the laboratory experiments of [9]. 

Let us consider the problem of the coaxiality of the stress and strain tensors. In [5, 6], it is experimentally 
shown that in pure shear in a free-flowing medium, the condition of coaxiality of the principal axes of the 
stress and strain tensor is satisfied. As might be expected, bending of the loading trajectory leads to violation 
of this condition. Here disalignment of the directions of the principal stresses and strains by a particular angle 
is observed. We denote the disalignment angle by/3. In the experiments, it was shown that at the point of 
bending of the t ra jectory  through angles 10 ~ < ~e < 80 ~ the disalignment angle/3 depends weakly on ~e and 
it is/3 ~ 7.5 ~ As ee ~ 0 or ae ~ 90 ~ the coaxiality is preserved since, in this case, the orientation of the 
principal axes of strains does not change and only the directions of minimum and maximal compression (in 
tile case of ee = 90 ~ can vary. The subsequent cyclic shear loading leads to a gradual decrease in the angle r 
so that, as a result, the disalignment angle/3 ~ 0. In other words, the bending of the loading trajectory was 
"erased" from the material 's  memory. 

Calculations using model (3)-(5) are in qualitative agreement with results of these experiments. The 
calculated angle of disalignment/3 of the stress and strain tensors at the moment of bending of the trajectory 
was/3 = 15.64 ~ at ee = 30 ~ = 28.73 ~ at ee = 60 ~ and/3 = 0 at ~e = 90 ~ Subsequent shear deformation also 
results in the angle ]3 ~ 0. 

C o n c l u s i o n s .  The results obtained lead to the following conclusions. 
The procedure and experiments of [5-9] on simple and complex loading of inelastic materials can be 

used as a basis for analysis of existing mathematical models of continuous media and development of new 
ones. 

The hypoplastic model of a free-flowing medium of [15] gives a good qualitative approximation of real 
strain, predicts some properties of the material for different loading trajectories, and applies for boundary- 
value problems. 

This work was supported by the International Foundation INTAS (Grant No. 95-0742). 
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